

EFFICIENT INDUSTRIAL METHODS FOR HARVESTING AND DEWATERING OF MICROALGAE

Vojtěch Bělohlav, Tomáš Jirout

Czech Technical University in Prague Faculty of Mechanical Engineering Department of Process Engineering

Microalgae | Harvesting and Dewatering

Microalgae | Harvesting and Dewatering

Biomass production cost 30 %

CAPEX
Closed systems
33 %

CAPEX
Open systems
90 %

Microalgae | Properties

Carlot Carlot	100	0.55
Sample	1	2
Algae concentration X_b (g L ⁻¹)	1.1	1.7
Mean cell diameter <i>D₅₀</i> (μm)	5.12	5.19

Microalgae | Properties

	1000	
Sample	1	2
Algae concentration X_b (g L ⁻¹)	1.1	1.7
Mean cell diameter D_{50} (µm)	5.12	5.19
Settling velocity u_s (mm h ⁻¹)	1.8	2.3

Model cultivation technologies

Technology Processed built-up area culture medium $(m^3 h^{-1})$ (ha) 0.2 0.3 10 100 **250**

Harvesting | Circular settler

Full separation | Processed suspension V_{su} (m³ s⁻¹)

$$V_{su} = \pi u_s (R_2^2 - R_1^2)$$
 u_s - settling velocity of microalgae cells (m s⁻¹)

Thickening | Cross-sectional area of the settler A (m²)

$$A = \frac{V_{su} X_{su}}{u_s} \left(\frac{1}{X_{su}} - \frac{1}{X_t} \right)$$

$$X_{su} - \text{ inlet suspension concentration (g L-1)}$$

$$X_t - \text{ outlet suspension concentration (g L-1)}$$

A _{built-up} (ha)	R ₁ (m)	R ₂ (m)
0.2	0.05	7
1	0.05	40
100	0.05	200

Harvesting | Lamella settler

Full separation | Processed suspension V_{su} (m³ s⁻¹)

$$V_{su} = i u_s L W \cos \alpha$$

i - number of lamellae in settler (-)

A _{built-up} (ha)	<i>L</i> (m)	<i>W</i> (m)	<i>i</i> (-)
0.2	2.4	3	30
1	2.4	5	600
100	2.4	5	14 700

Dewatering | Decanter centrifuge

Full separation | Processed suspension V_{su} (m³ s⁻¹)

$$V_{su} = \frac{\pi H D^2 (r_2^2 - r_1^2) (\rho_p - \rho_l) \left(2\pi \frac{n}{60}\right)^2}{18\mu \ln \frac{r_2}{r_1}}$$

- diameter of microalgae n rotation speed of the ρ_I density of culture bowl (rpm) medium (kg m⁻³) cells (m)
 - density of microalgae μ suspension dynamic suspension (kg m⁻³)
 - viscosity (Pa s)

A _{built-up} (ha)	<i>r</i> ₁ (m)	r ₂ (m)	<i>H</i> (m)	n (-)
0.2	0.050	0.100	0.7	2 500
1	0.120	0.225	2.3	3 300
100	N/A			

Dewatering | Disc centrifuge

Radial component of peripheral velocity

$$u_{sr} = 0.27 u_{sg} \left(\frac{r_1}{r_2}\right)^{-0.397} \left(\frac{h}{r_2 \tan \varphi}\right)^{-0.957}$$

Settling velocity in centrifuge

$$u_{sg} = r_2 \frac{D^2(\rho_p - \rho_l) \left(2\pi \frac{n}{60}\right)^2}{18\mu}$$

Full separation | Processed suspension V_{su} (m³ s⁻¹)

$$V_{su} = i 2 \pi r_2 h u_{sr}$$

A _{built-up} (ha)	r ₁ (m)	r ₂ (m)	n (rpm)	i (-)
0.2	0.064	0.125	1 500	20
1	0.064	0.125	3 900	82
100	0.12	0.400	3 000	87

Flocculation | Sedimentation rate

Sample	Settling velocity (m h ⁻¹)	Microalgae concentration (g L ⁻¹)
Sample 1	1.9 · 10 ⁻³	1.1
Sample 2	1.9 · 10 ⁻³	1.7
PWG 54, 8.25 ml L ⁻¹	3.0	
PWG 54, 8.50 ml L ⁻¹	4.8	1 1
PWG 54, 8.75 ml L ⁻¹	10.3	1.1
PWG 54, 10.00 ml L ⁻¹	18.0	

Flocculation | Harvesting and Dewatering

Circular settler

A _{built-up} (ha)	<i>R</i> ₁ (m)	R ₂ (m)
0.2	0.05	7
1	0.05	40
100	0.05	200

Flocculation

100 0.05 4

Lamella settler

A _{built-up}	L (22)	W	i
(ha)	(m)	(m)	(-)
0.2	2.4	3	30
1	2.4	5	600
100	2.4	5	14 700

Flocculation

1	0.6	0.5	10
100	2.4	3	10

Decanter centrifuge

A _{built-up} (ha)	<i>r</i> ₁ (m)	r ₂ (m)	<i>H</i> (m)	n (-)
0.2	0.050	0.100	0.7	2 500
1	0.120	0.225	2.3	3 300
100	N/A			

Flocculation

100	0.050	0.100	0.5	1 600
-----	-------	-------	-----	-------

Microalgae | Sedimentation rate variation

Sample	Settling velocity (mm h ⁻¹)
Trail 1_Sample 1	1.8
Trail 1_Sample 2	2.3
Trail 2	45.3
Trail 3	32.5

Affecting parameters ???

Conclusions | Harvesting and Dewatering

Effective separation equipment design methodology

- Harvesting and Dewatering cost reduction
- Utilization for scale-up

Flocculation

Promising separation method for industrial applications

Sedimentation rate variation

Optimal characteristics of the culture medium for separation