

CCUV4 workshop No. 3, 6/2023 Lodz, Poland

Visegrad Fund

Cryogenic CO₂ Separation from Flue Gas

Radek Šulc and Jonáš Kareis

Czech Technical University in Prague Faculty of Mechanical Engineering Department of Process Engineering Czech Republic Radek.Sulc@fs.cvut.cz

Acknowledgement

The project is supported by The International Visegrad Fund, project ID22120032.

Decarbonization

Emissions of Greenhouse gases in Czech Republic - 2018

Celkové emise ČR za rok 2018

Strategies for CO₂ capture

- post-combustion separation
- pre-combustion separation
- separation after oxy-fuel combustion

Technologies for CO₂ separation

- Absorption
- Adsorption
- Membrane separation
- Cryogenic separation
- Biological separation (by algae)

FONT-PALMA, Carolina, David CANN a Chinonyelum UDEMU. Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. C. 2021,7(3).

Cryogenic separation

Advantages

- High CO₂ purity
- High separation efficiency

Disadvantages

- High energy demanding technology
- Deep cold source is needed.
- Insulation & special materials are needed.
- Water separation is needed.

Triple point				
T [K]	p [bar]			
216.55 K (-56.6 °C)	5.17			

350

150

200

250

T [K]

300

SCHACH, Marc-Oliver, Bernardo OYARZUN, Henning SCHRAMM, Rüdiger SCHNEIDER a Jens-Uwe REPKE. Feasibility study of CO2 capture by antisublimation. Energy Procedia [online]. 2011, 4, 1403-1410.

Motivation

1. Regasification of cryoliquids (e.g. LNG, LAES) \Rightarrow recovery of stored cold for CO₂ cryogenic separation.

2. CO₂ separation as a liquid.

Świnoujście LNG terminal Polskie LNG @ Felinski-Piotr

⇒to decrease energy consumption ⇒to improve economy

Effect of oxygen purity

Oxyfuel combustion: oxygen of 95 % purity is usually utilized (cheaper)

Cryogenic air separation

LOX purity [%]	Flue gas temperature [K]	Pressure [MPa]	Separation efficiency [%]	LCO2 purity [%]
95	220	1	84.5	98.5
	205	1	96.1	97.24
	220	1.5	94.1	96.74
	205	1.6	98.4	95
99.8	220	1	99.68	99.14
100	220	1	99.99	99.33

Results

present technology: efficiency and purity > 99.9 %

	Separation	CO ₂	Compressor	Steam
Technology	efficiency	purity	input	production
	[%]	[%]	[kW]	[t/h]
Pre-Comp 99.8	99.68	99.14	221	12.29
Pre-Comp 100	99.99	99.3	244	12.28
Pre-Comp 95	84.59	98.5	185	12.21
Pre-Comp 95	98.43	95	287	12.27
205/1.6				
Post-Comp	99.68	99.14	141	12.20
NoComp	99.68	99.14	-	12.12

Conclusions present technology: efficiency and purity > 99.9 %

- The technology proposed combines oxy-fuel combustion and cryogenic CO₂ separation. The liquefied oxygen (LOX) is used as a oxygen source for combustion.
- The cold stored in LOX is utilized during regasification for CO₂ cryogenic separation. CO₂ is separated as a liquid (1 MPa, -53.15°C)
- The three technology concepts were analysed: 1) pre-combustion compression of NG and GOX, 2) post-combustion compression of flue gases, and 3) pressurized LOX (no compression).
- Pre-combustion compression: CO₂ efficiency 99.68 % + 99.14 % purity for 99.8 oxygen ; effect of oxygen purity $\eta_{CO2} \downarrow$, effect of oxygen excess $\eta_{CO2} \downarrow$. η_{CO2} improvement: T \downarrow , P \uparrow .
- Post-combustion compression: CO₂ efficiency 99.68 % + 99.14 % purity for 99.8 oxygen, lower steam production.
- Pressurized LOX: CO₂ efficiency 99.68 % + 99.14 % purity for 99.8 oxygen, lower steam production.

Thank you very much for your attention.

Acknowledgements

The project is supported by The International Visegrad Fund, project ID22120032.