

Lodz University of Technology (TUL) • Visegrad Fund Faculty of Process & Environmental • • Engineering

The influence of temperature and residence time on hydrothermal carbonization of food waste

R. Ślęzak & S. Ledakowicz Department of Bioprocess Engineering

Mechanism of HTC proces

Source: Yang, G., Liu, H., Li, Y., Zhou, Q., Jin, M., Xiao, H., Yao, H., 2022. Kinetics of hydrothermal carbonization of kitchen waste based on multicomponent reaction mechanism. Fuel 324, 124693.

Hydrothermal carbonization process

Infuence of process paramter:

- temperature of the proces,
- residence time of reaction,
- water content,
- pH of environment
- pressure

Experimental set-up of HTC process

Experimental set-up of HTC process

FW – 40 g DM (dry matter) Water – 360 g Without pH adjustment

Experimental set-up of HTC process

Visegrad Fund

Each experiment was performed in duplicate and the arithmetic average was taken for data interpretation.

Analyses performed

Solid phase:

- proximate analysis (Mettler Toledo, TGA/SDTA 851eLF),
- ultimate analysis (CE Instrument, NA 2500),
- combustion (Mettler Toledo, TGA/SDTA 851eLF).

Liquid phase:

- рН (WTW, pH 540 GLP),
- total organic carbon (TOC) (Lachat Instruments, IL550 TOC-TN),
- total nitrogen bound (TN_b) (Lachat Instruments, IL550 TOC-TN),
- carboxylic acids (GC Varian, CP 3800, column BP21, detector FID).

Gas phase:

- volumetric analysis (water displacement method),
- gas composition (H₂, CH₄, CO, CO₂) (GC SRI Instrument 8610C, column: molecular sieve, silica gel detector TCD).

Each analyses was performed in triplicate and the arithmetic average was taken for data interpretation.

Char production - yield

• Visegrad Fund Char production – proximate analysis •

T(°C)	t (h)	M (%)	VM (%)	FC (%)	A (%)	FR (-)
180	0.5	1.15	75.59	21.15	2.11	0.28
180	3.5	1.24	65.35	30.7	2.71	0.47
215	2.0	1.27	60.76	34.16	3.81	0.56
250	0.5	0.73	58.46	34.98	5.83	0.60
250	3.5	0.64	53.2	40.29	5.87	0.76
Substrat (FW)		0.58	70.07	25.02	4.33	0.36

$$Fuel \ ratio \ (FR) = \frac{FC}{VM}$$

M – moisture, VM - volatile matter, FC – fixed carbon, A - ash

Char production – ultimate analysis

Char production – ultimate analysis • •

Τ(°C)	t (h)	HHV (MJ/kg)	ER (-)
180	0.5	22.6	0.58
180	3.5	23.7	0.67
215	2.0	25.5	0.73
250	0.5	26.8	0.68
250	3.5	28.5	0.69
Subst	rat (KW)	18.3	

 $HHV\left(\frac{MJ}{kg}\right) = 0.3517C + 1.1626H + 0.1047S - 0.1110$

 $Energy \, recovery \, (ER) = \frac{Y_{char} \cdot HHV_{char}}{HHV_{feedstock}}$

 T_i – ignition temperature, T_m – maximum decomposition temperature, T_f – burnout temperature

Oil production - yield

Oil production – pH, acetic acid

Oil production – TOC, TN_b

0

180°C-0.5h 180°C-3.5h 215°C-2.0h 250°C-0.5h 250°C-3.5h

15

Gas production - yield

Char

Conclusions

- T~ and t ~ yield production of char \uparrow .
- T[↑] and t[↑] volatile matter \downarrow & fixed carbon [↑], C[↑] & O \downarrow .
- Carboxylic acids in liquid contain mainly acetic acid.
- $\overline{\mathbf{o}}$ T¹ and t¹ caused increased concentration of acetic acid.
 - TOC \downarrow and TN_b \downarrow when T[↑] and t[↑].
- T[↑] and t[↑] yield production of gas [↑], containing mainly CO_2 .

Thanks for your kind attention \odot

Acknowledgement

Project financed by National Science Centre Poland UMO-2021/43/B/ST8/00298 Grant No. 2021/43/B/ST8/00298 01.09. 2022-31.08.2025

18