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m Introduction

Adsorption is common industrial process for gas separation.

In my dissertation | dealt with separation of water vapors from
natural gas, H,O-CH,.

In the department laboratory is adsorption
unit separating oxygen from air, O,-N, .
(hospitals, bioreactors, WWT)
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CO, capture has become a topic of increasing interest
(fossil and conventional fuels still represent a majority of
energy supplies, global strategies towards cleaner
environment, green industrial policies etc..



ﬂ Research aim and objectives

Check the potential of an adsorption process application for
post-combustion CO, capture from a medium size natural-
gas cogeneration (CHP) unit. Real process data, literature
data, and mathematical modelling were applied.

Example of high
efficiency (92%)
energy source.
Industrial use, and
remote regions with
poor infrastructure.




CHP 2,3 MW, +2 MW..

Flue gas flow: 9,000 Sm?/h

Flue gas temp.: 82°C.

Wet gas vol. comp.: 73 % N,
12 % H,0O
8 % O,
6 % CO,
1 % Ar

Emission Averaged
limit concentration
(mg/m?®) (mg/m®)
CO 650 345
NOx 500 326 + 36

ﬂ Input data Major simplification
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/ﬁ} Process selection

Commercialised process for CO,
capture is amine-based absorption
(MEA).

Adsorption CO, capture technology

readiness level TRL = 7.

It is promising technology suitable for a high volume
of diluted gas processing. Adsorption require less
energy for sorbent regeneration and extends the
sorbent lifetime, also do not face problems with
corrosion.

Industrially applied adsorption methods:

1) Pressure Swing Adsorption (PSA)
including Vacuum Swing Adsorption (VSA)

2) Temperature Swing Ads. (TSA)

These methods utilize a difference In
adsorption equilibrium.
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Concentrated CO?
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TSA — problem with Y- o e
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time demanding DB Waste Heat
regeneration. Further =
studies on concepts
of rapid TSA —

(TRL is low).

Heat Exchangtr' ;

Preprocessing

Desulfurization, Denitrification,
Oust removal, Dehumidification
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Adsorption is a consequence of
surface energy of adsorbent and

charge of gas molecules.

Ads. rate/extend is affected by
internal structure of the adsorbent.

CO, capture benchmark

aluminosilicate minerals e.g.,
Zeolite 13X. Research on metal

organic frameworks MOFs.

Adsorbent selection criteria:
A. Price & availability

B. Ads. capacity & Selectivity

C. Durability
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Mathematic modelling
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Bed 2

Bed 1

1 stage train design selection
(4x2col., col.: L=2m, O=1m).

to assure performance (mass
transfer/superficial velocity)

Continuous separation in
train requires at least two
columns system and cycle

scheduling.
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ﬁ Conclusions

CO, capture from medium size emission source by adsorption
IS possible

VSA for CO, capture is favourable from energy point of view.
Zeolit 13X is attractive adsorbent for industrial VSA CO, sep.

Train configuration of VSA units can benefit from a simple
technical solution and provide continuous CO, removal.

Mathematical modeling provides possibility to tune process
parameters (no. of columns, cycle time).

Light product pressurization cycle is recommended for VSA. It
reduces the energy consumption of vacuum pumps and
Improves product recovery.

As the next step techno/economical evaluation of the
proposed solution shall be performed.
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[ I ctual work

CO2 capture shall be the latest in a series of flue gas cleaning
processes because the flue gas must be free of particulate
matter, reactive components (sulfur and nitrogen oxides), and
moisture. Water negatively affects the shape of the adsorption
Isotherm and condenses, leading to degradation of adsorbents
(collapse of pores) and damage to equipment, for example,
corrosion
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echnolog
1-stage 4-step VSA zeolite 13X, UTSA-
16 IISERP, MOF2

1-stage 4-step TSA activated carbon

1-stage 4-step TSA activated carbon

2-stage 5-step VPSA
zeolite 5A
activated carbon

Moving-bed TSA, zeolite 13X
(1-stage with circulating adsorbent)

4-stage TSA with fluidised bed
(steam regeneration)
amine-grafted ion-exchange resin

1-stage 3-step VSA zeolite 13X

1-stage 4-step PTSA (solar-assisted)
zeolite 13X

1-stage 8-step VPSA
2-stage 4-bed 9-step DR-VPSA
activated carbon

| _Fluegas

Composition Parameters

20 % CO, 100 kPa,

80 % N, 25 °C,
various: 23,000 m3/h

9% CO, 100 kPa,

79% N, 30 °C,

12%0, 13t/h

3.72 % CO, 100 kPa,

75.29%N,  20°C,

12.57 % O, 2,380t/h

8.41 % H,0

14.3 % CO, 100 kPa,

77.8%N, 20 °C,

4.6% 0, 304.3 mol/s

0.94 % Ar (200 kPa at 360 mol/s

0.002% SO,  before 2" stage)

2.3% H,0

5.15%CO, 105 kPa, 30°C,

94.85 % N, 3,298 t/h

15.0 % CO, 50-53 kPa,

76.5% N, 40°C,

85%0, 612-2718 m3/h

<1 ppmvSO, (plantstudy: 3,060
m3/h)

11.4 % CO, 100 kPa,

88.6 % N, 30-50°C,
1.670t/h

14.98% CO, 150 kPa, 30 °C,

85.02 % N, 590 t/h of CO,

13.4-13.8% 160 kPa,

co, 18°C,

86.2 - 86.6 % N, 60 - 100 m3/h (bypass)

Adsorption process selection

v oty

450 TPD 95.0 %
steam-methane reforming (process constraint)
hydrogen plant

20 MW
coal-fired power plant

99.1 %

411 MW

natural gas combined cycle
power plant

1666 MW advanced super- 95.1 %
critical pulverized coal-fired

plant

802 MW NG combined cycle 95.1 - 95.8 %
power plant

1 MW, 93.0 %
sub-bituminous coal-fired (process constraint:
power plant 90.0 %)
20 MW 99.1 %
coal-fired power plant
800 MW, 99.9 %
coal-fired power plant
460 MW 75.2 % (VPSA),
pilot plant 87.5%
(DR-VPSA)



