

Potential of CO₂ separation by adsorption

Ing. Michal Netušil, Ph.D.*a Ing. Marek Nedoma^b

* Michal.netusil@fs.cvut.cz ^aDepartment of Process Engineering ^bDepartment of Energy Engineering

Faculty of Mechanical Engineering, Czech Technical University in Prague

Visegrad Fund

The project is supported by The International Visegrad Fund, project ID22120032.

Introduction

Adsorption is common industrial process for gas separation.

In my dissertation I dealt with separation of water vapors from natural gas, H_2O-CH_4 .

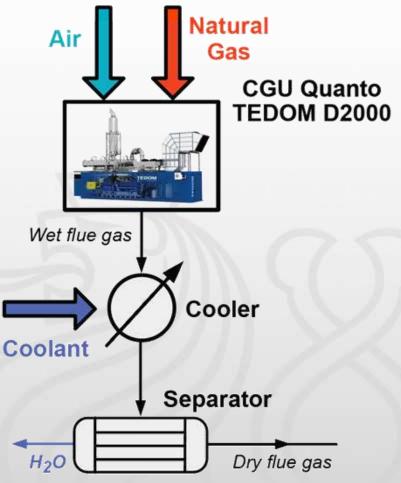
In the department laboratory is adsorption unit separating oxygen from air, O_2 - N_2 . (hospitals, bioreactors, WWT)

CO₂ capture has become a topic of increasing interest (fossil and conventional fuels still represent a majority of energy supplies, global strategies towards cleaner environment, green industrial policies etc..

Research aim and objectives

Check the potential of an adsorption process application for post-combustion CO_2 capture from a medium size naturalgas cogeneration (CHP) unit. Real process data, literature data, and mathematical modelling were applied.

Example of high efficiency (92%) energy source. Industrial use, and remote regions with poor infrastructure.

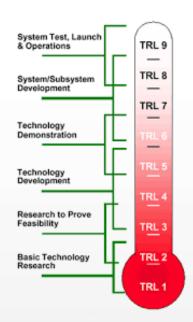


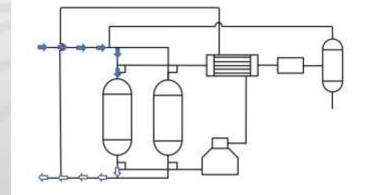
Input data

Major simplification

CHP 2,3 MW_h +2 MW_e . Flue gas flow: 9,000 Sm³/h Flue gas temp.: 82°C. Wet gas vol. comp.: 73 % N₂ 12 % H₂O 8 % O₂ $6\% CO_{2}$ 1 % Ar Emission Averaged limit concentration (mg/m^3) (mg/m^3) CO 34 ± 5 650 326 ± 36 NO_X 500

Process selection

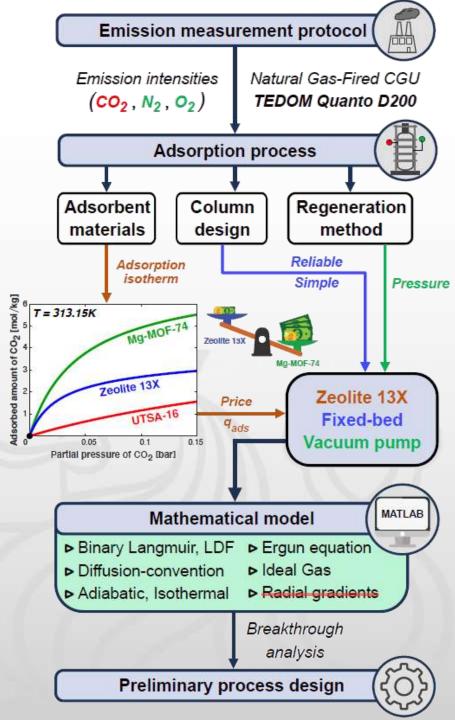

Commercialised process for CO_2 capture is amine-based absorption (MEA). Adsorption CO_2 capture technology readiness level TRL = 7.


It is promising technology suitable for a high volume of diluted gas processing. Adsorption require less energy for sorbent regeneration and extends the sorbent lifetime, also do not face problems with corrosion.

Industrially applied adsorption methods:

- 1) Pressure Swing Adsorption (PSA) including Vacuum Swing Adsorption (VSA)
- 2) Temperature Swing Ads. (TSA)

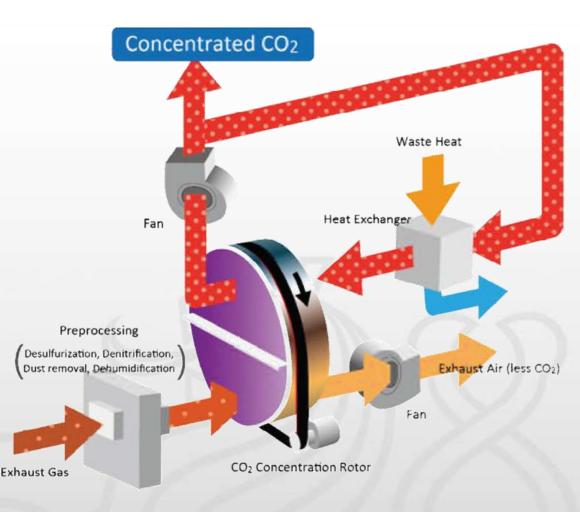
These methods utilize a difference in adsorption equilibrium.



Methodology

How conceptual design adsorption process and set key process parameters? 1. Define separation limit

- 2. Lit. search for similar cases to select:
 - A. Regeneration method
 - B. Adsorbent
 - C. Equipment setup
- 3. Create a model
- 4. Tune the process

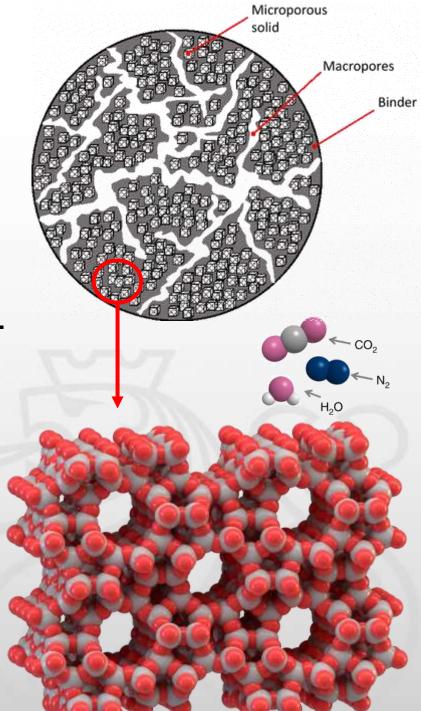


Regeneration methods

TSA – problem with time demanding regeneration. Further studies on concepts of rapid TSA \rightarrow (TRL is low).

PSA – pressurize the entire flow is energy demanding. VSA evacuates only volume of column.

Seibu Giken, C-SAVE

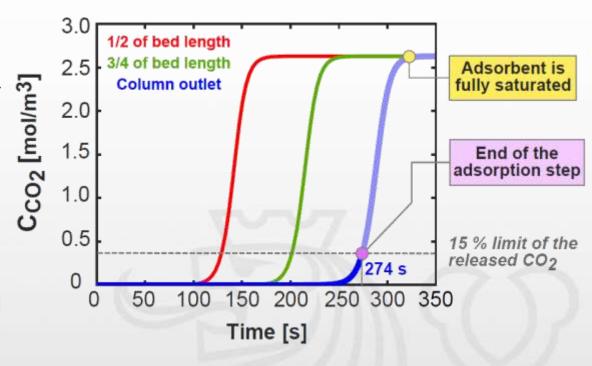

Adsorbent

Adsorption is a consequence of surface energy of adsorbent and charge of gas molecules. Ads. rate/extend is affected by internal structure of the adsorbent.

CO₂ capture benchmark aluminosilicate minerals e.g., Zeolite 13X. Research on metal organic frameworks MOFs.

Adsorbent selection criteria:

- A. Price & availability
- B. Ads. capacity & Selectivity
- C. Durability



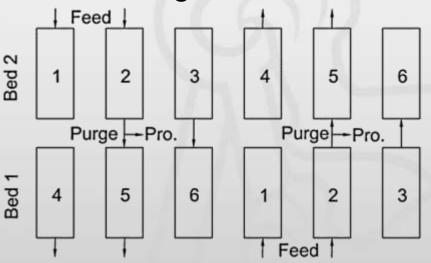
Mathematic modelling

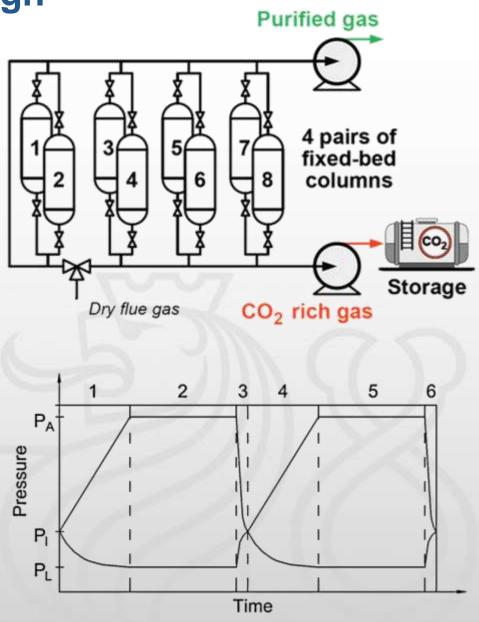
Analysis by dimensionless criteria to tune parameters. Favorable shape of breakthrough curve as the target.

Outcome is the adsorption cycle duration.

Biot – sufficient transport to surface.

 π_1 - significant intraparticle diffusion.


 π_2 - convection dominant


 $Bi = \frac{\beta R_p}{D_{ef}} \quad \frac{\text{transport to particle surface}}{\text{difussion into particle}}$ $\pi_1 = \frac{u}{4H} \frac{R_p^2}{D_{ef}} \frac{\varepsilon_p}{1 - \varepsilon_p} \quad \frac{\text{convection through column}}{\text{difussion into particle}}$ $\pi_2 = \frac{D_{AX}}{v \cdot H} \cong \frac{\beta \cdot R_p}{H} \quad \frac{\text{axial dispersion}}{\text{convection through column}}$

Process design

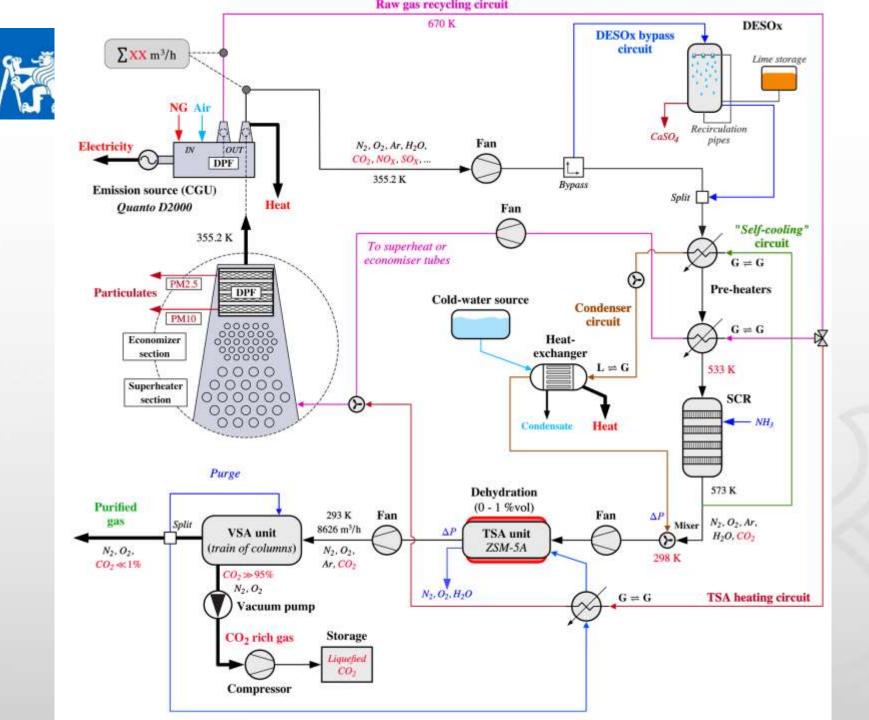
- 1 stage train design selection (4x2col., col.: L=2m, \emptyset =1m).
- to assure performance (mass transfer/superficial velocity)
- Continuous separation in train requires at least two columns system and cycle scheduling.

Conclusions

- CO₂ capture from medium size emission source by adsorption is possible
- VSA for CO₂ capture is favourable from energy point of view.
- Zeolit 13X is attractive adsorbent for industrial VSA CO₂ sep.
- Train configuration of VSA units can benefit from a simple technical solution and provide continuous CO₂ removal.
- Mathematical modeling provides possibility to tune process parameters (no. of columns, cycle time).
- Light product pressurization cycle is recommended for VSA. It reduces the energy consumption of vacuum pumps and improves product recovery.
- As the next step techno/economical evaluation of the proposed solution shall be performed.

THANK YOU FOR THE ATTENTION!

QUESTIONS?


he project is supported by The International Visegrad Fund

Actual work

CO2 capture shall be the latest in a series of flue gas cleaning processes because the flue gas must be free of particulate matter, reactive components (sulfur and nitrogen oxides), and moisture. Water negatively affects the shape of the adsorption isotherm and condenses, leading to degradation of adsorbents (collapse of pores) and damage to equipment, for example, corrosion

Adsorption process selection

Def	Adsorption		Flue gas	Deverylant	
Ref	technology	Composition	Parameters	Power plant	CO ₂ purity
[38]	1-stage 4-step VSA zeolite 13X, UTSA- 16 IISERP, MOF2	20 % CO ₂ 80 % N ₂	100 kPa, 25 °C, various: 23,000 m³/h		95.0 % (process constraint)
[39]	1-stage 4-step TSA activated carbon	9 % CO ₂ 79 % N ₂ 12 % O ₂	100 kPa, 30 °C, 13 t/h	20 MW coal-fired power plant	99.1 %
[40]	1-stage 4-step TSA activated carbon	3.72 % CO ₂ 75.29 % N ₂ 12.57 % O ₂ 8.41 % H ₂ O	100 kPa, 20 °C, 2,380 t/h	411 MW natural gas combined cycle power plant	-
[41]	2-stage 5-step VPSA zeolite 5A activated carbon	14.3 % CO_2 77.8 % N_2 4.6 % O_2 0.94 % Ar 0.002 % SO_2 2.3 % H_2O	100 kPa, 20 °C, 304.3 mol/s (200 kPa at 360 mol/s before 2 nd stage)	1666 MW advanced super- critical pulverized coal-fired plant	
[42]	Moving-bed TSA, zeolite 13X (1-stage with circulating adsorbent)	5.15 % CO ₂ 94.85 % N ₂	105 kPa, 30 °C, 3,298 t/h	802 MW NG combined cycle power plant	95.1 - 95.8 %
	4-stage TSA with fluidised bed (steam regeneration) amine-grafted ion-exchange resin	15.0 % CO ₂ 76.5 % N ₂ 8.5 % O ₂ < 1 ppmv SO ₂	50-53 kPa, 40 °C, 612 - 2718 m ³ /h (plant study: 3,060 m ³ /h)	1 MW _e sub-bituminous coal-fired power plant	93.0 % (process constraint: 90.0 %)
[43]	1-stage 3-step VSA zeolite 13X	11.4 % CO ₂ 88.6 % N ₂	100 kPa, 30 - 50 °C, 1.670 t/h	20 MW coal-fired power plant	99.1 %
[44]	1-stage 4-step PTSA (solar-assisted) zeolite 13X	14.98 % CO ₂ 85.02 % N ₂	150 kPa, 30 °C, 590 t/h of CO ₂	800 MW _e coal-fired power plant	99.9 %
[45]	1-stage 8-step VPSA 2-stage 4-bed 9-step DR-VPSA activated carbon	13.4 - 13.8 % CO ₂ 86.2 - 86.6 % N ₂	160 kPa, 18 °C, 60 - 100 m³/h (bypass)		75.2 % (VPSA), 87.5 % (DR-VPSA)