

CCUV4 Workshop in Prague

Research of Pretreatment of Lignocellulosic Biomass and cellulose pulp Carlos Arce Gutiérrez

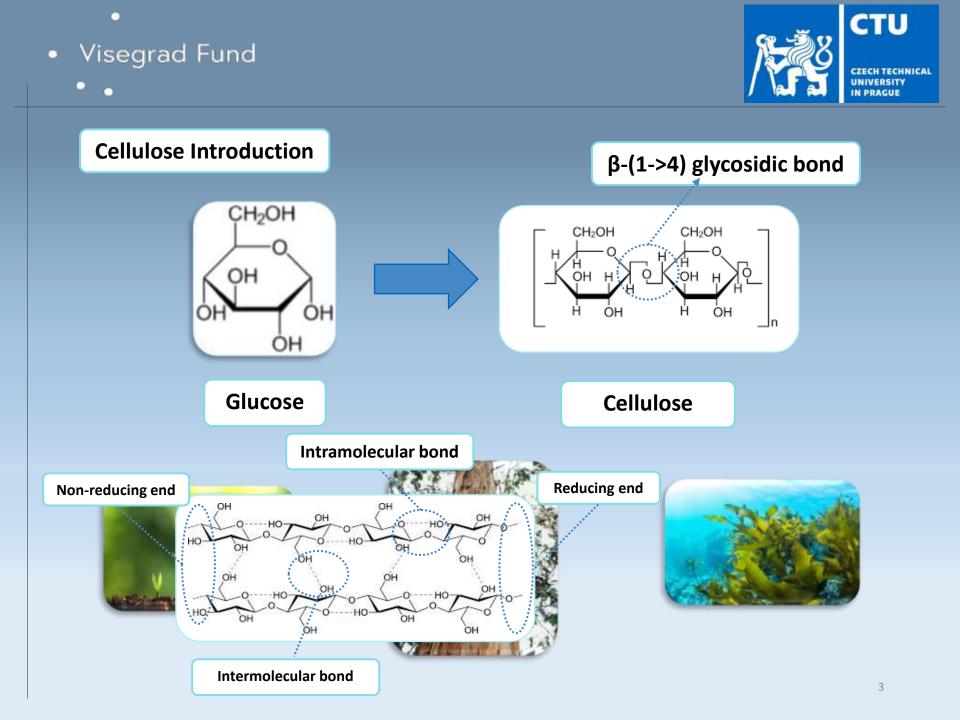
• Visegrad Fund

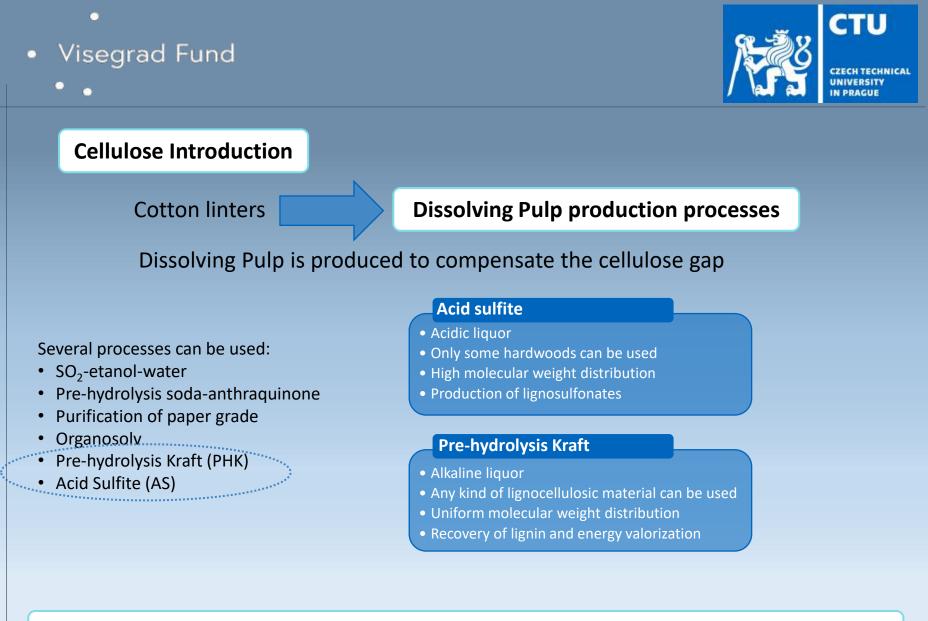
•

University of Cantabria

- Chemical Engineering (5 years)
- Industrial Chemistry (1 years)
- PhD. Industrial Engineering (3 years)

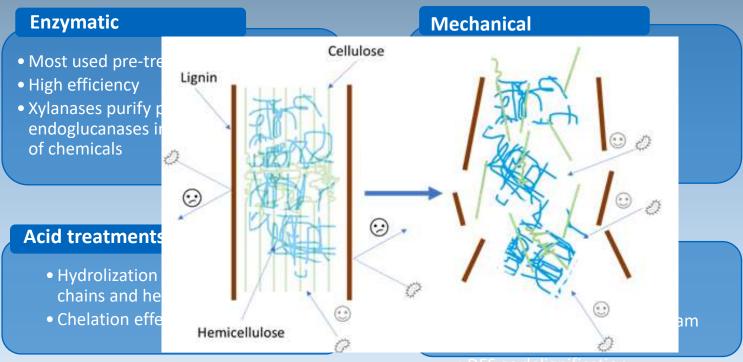
Czech technical university


• 2 year Post Doc position on mechanical pretreatment of biomass



CZECH TECHNICAL UNIVERSITY IN PRAGUE

CTU


56 % of the Pulp is produced by PHK and 42 % of the Pulp is produced by AS process

0

Pretreatment of cellulose pulp and LCB

DES as delignification

Dissolving Pulp quality parameters

Lignin

- Phenolic polymer present in every lignocellulosic material
- Low content is needed

Pentosan

- Hetero polysaccharide of pentoses
- Low content is needed 3-4 %

Brightness

- Reflectance at 457 nm
- Higher than 90 % ISO. Cotton linters can be lower

α-cellulose

- Represents the unaltered fraction of cellulose
- Higher than 90 % is needed

Viscosity

- Related to the degree of polymerization and the MWD
- Should be between 400 and 600 mL/g

Fock's reactivity

- Ability of chemicals to react with cellulose
- The higher the better carefull with viscosity

These parameters need to be controlled to have good quality of pulp

Visegrad Fund

.

Bleaching process

Elemental chlorine Elemental chlorine free

- Chlorine-based bleaching
- High selectivity towards impurities
- Environmentally harmful

Totally chlorine free

- Non cholrine-based compounds
- Low selectivity towards impurities
- Environmentally friendlier

Bleaching stage is needed not for brightness but to purify pulp further

.

Bleaching process

Independent Variables

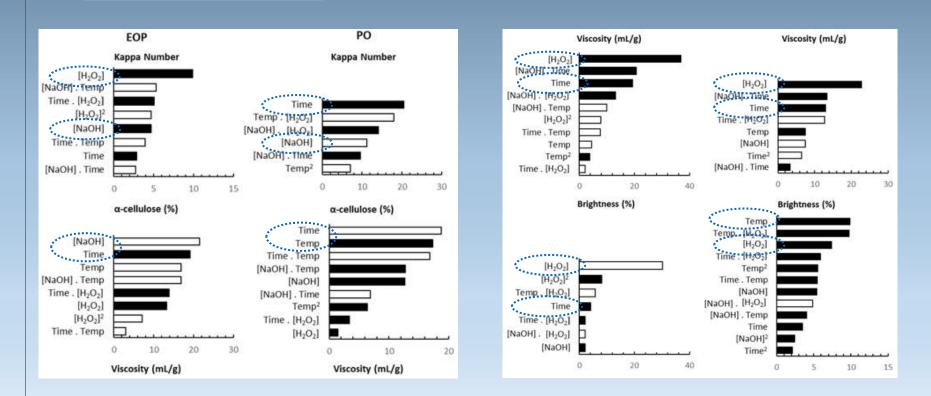
- NaOH dosage (Kg/ADT)
- H₂O₂ dosage (Kg/ADT)
- Time (min)
- Temperature (°C)

Response variables

- Lignin content (TAPPI UM 246)
- α-cellulose (TAPPI T203 cm-99)
- Brightness (TAPPI T452 OM-02)
- Viscosity (ISO 5351)

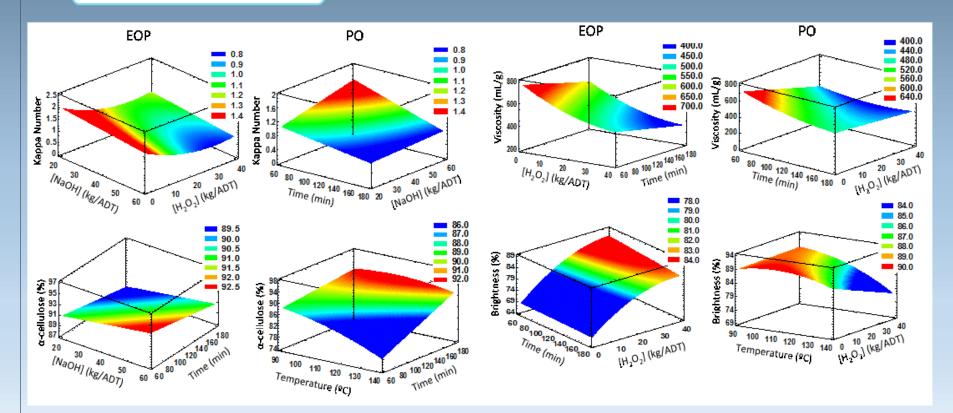
Washed pulp is weighed and chemicals are added Conditions of temperature, time and pressure (O₂) are set

Pulp is washed until pH of waste water is nearly 7


Pulp is analyzed after bleaching

0

Bleaching process



0

Bleaching process

CTU CZECH TECHNICAL UNIVERSITY IN PRAGUE

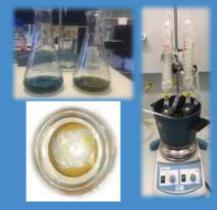
Bleaching process

Optimization

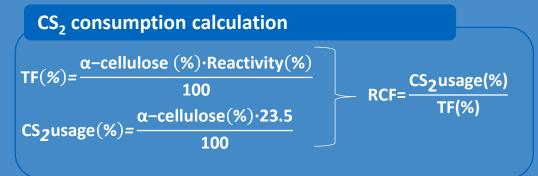
$$\mathbf{Z} = \sum \mathbf{costs}_{\mathbf{energy}} + \sum \mathbf{costs}_{\mathbf{chemicals}}$$

$$\begin{split} & \text{Cost}_{energy}^{EOP} \ (\Subset) = 0.\,00491 \cdot t_{R}^{EOP} \cdot \left(T^{EOP} - 65 \right) \\ & \text{Cost}_{energy}^{PO} (\circledast) = 0.\,00432 \cdot t_{R}^{PO} \cdot \left(T^{PO} - 65 \right) \\ & \text{Cost}_{chemicals}^{EOP} \ (\circledast) = 0.\,0259 \cdot C_{NaOH}^{EOP} \cdot t_{R}^{EOP} + 0.\,0743 \cdot C_{H_{2}O_{2}}^{EOP} \cdot t_{R}^{EOP} + 0.\,0259 \cdot t_{R}^{EOP} \\ & \text{Cost}_{chemicals}^{PO} \ (\circledast) = 0.\,0228 \cdot C_{NaOH}^{PO} \cdot t_{R}^{PO} + 0.\,0653 \cdot C_{H_{2}O_{2}}^{PO} \cdot t_{R}^{PO} + 0.\,0228 \cdot t_{R}^{PO} \end{split}$$

The optimization lead to cost reduction of 62.2 % when viscose was considered



•


Bleaching process

CS₂ Reduction

Quality pulp parameters

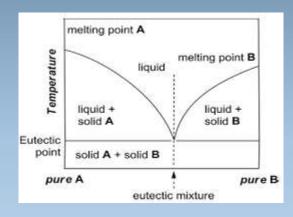
- Lignin content (TAPPI UM 246)
- α-cellulose (TAPPI T203 cm-99)
- Viscosity (ISO 5351)
- Reactivity (Fock's method)
- Pentosan content (Internal method)

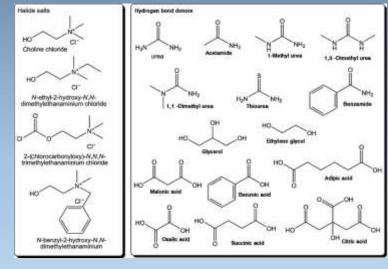
.

0

Bleaching process

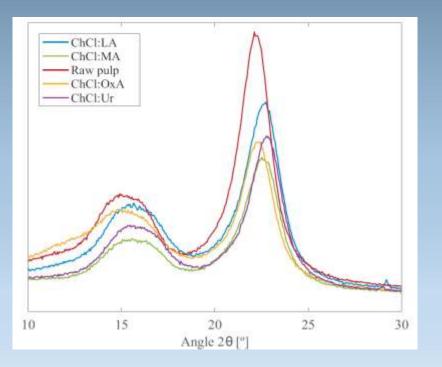
CS₂ Reduction

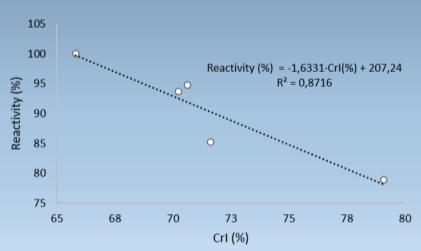

auction								
	Experiment	NaOH-kg/ADT H ₂ O ₂ -kg/ADT Time-min Temperature- [©] C	α-cellulose (%)	Reactivity (%)	CS ₂ (%)	TF (%)	RCF	CS ₂ reduction (%)
	Commercial	-	91.52	83.98 ± 6.47	21.51	76.85	0.28	-
	PO 1.1	0/0/180/90	88.51	97.35 ± 1.53	20.80	86.16	0.24	13.74
	PO 1.2	20/0/180/90	92.02	84.63 ± 5.48	21.62	77.88	0.28	0.770
	PO 1.3	60/0/180/90	90.81	85.37 ± 6.02	21.34	77.52	0.28	1.630
	PO 1.4	80/0/180/90	92.68	85.07 ± 6.10	21.78	78.84	0.28	1.280
	PO 2.1	0/30/15/90	91.40	56.02 ± 0.46	21.48	51.20	0.42	-49.91
ATAL	PO 2.2	0/30/30/90	91.30	81.89 ± 4.85	21.46	74.77	0.29	-2.550
	PO 2.3	0/90/90/90	91.75	85.42 ± 3.79	21.56	78.37	0.28	1.690
2.5	PO 2.4	0/30/210/90	88.19	93.53 ± 5.26	20.72	82.48	0.25	10.21
	PO 3.1	0/30/180/70	89.62	79.32 ± 5.73	21.06	71.09	0.30	-5.870
	PO 3.2	0/30/180/110	89.40	77.21 ± 5.47	21.01	69.03	0.30	-8.770
	PO 3.3	0/30/180/140	89.74	96.89 ± 1.44	21.09	86.95	0.24	13.33
~	PO 3.4	0/30/180/160	89.81	89.94 ± 4.35	21.11	80.78	0.26	6.630
	PO 4.1	0/5/180/90	88.58	78.33 ± 3.43	20.82	69.38	0.30	-7.210
	PO 4.2	0/30/180/90	91.17	95.3 ± 0.46	21.42	86.89	0.25	11.88
	PO 4.3	0/50/180/90	86.87	96.57±1.37	20.41	83.89	0.24	13.04
	PO 4.4	0/80/180/90	83.07	90.43 ± 4.80	19.52	75.12	0.26	7.130



0

DES pre-treatment




•

DES pre-treatment

Treatment	α-cellulose	Fock's reactivity(%)	CS₂(%)	TF(%)	RCF	CS ₂ reduction (%)
Raw pulp	91.02	78.86	21.4	71.8	0.30	-
ChCl:LA	92.52	93.70	21.7	86.7	0.25	15.83
ChCl:Ur	91.28	94.81	21.5	86.5	0.25	16.82
ChCl:MA	91.88	85.18	21.6	78.3	0.28	7.416
ChCl:OxA	86.86	100.00	20.4	86.9	0.24	21.14

A linear corelation between CrI and reactivity was found

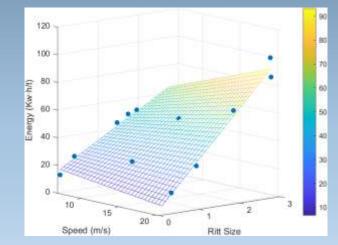
DES employed did not change the configuration of cellulose chain and reduced crystallinity of cellulose

.

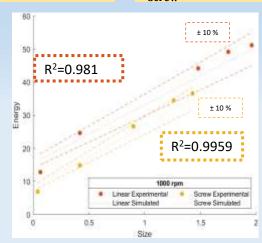
Mechanical pretreatment

Predict and optimize the energy consumed in these pretreatments to achieve a certain particle size, when LCB is used

There are equations that predict the energy consumption but were developed for minerals not for biomass

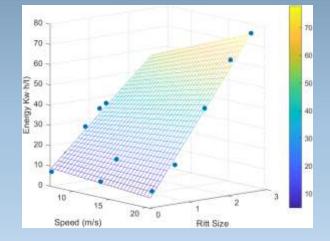


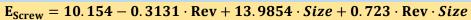
•


0

Mechanical pretreatment

LINEAR ROTOR




 $E_{linear} = 21.16 - 0.82 \cdot Rev + 10.27 \cdot Size + 1.07 \cdot Rev \cdot Size$

SCREW ROTOR

17

Acknowledgements

CCUV4 - Green Deal strategies for V4 countries: The needs and challenges to reach low-carbon industry.

The project is supported by The International Visegrad Fund, project ID22120032.

CCUV4 Workshop in Prague

Research of Pretreatment of Lignocellulosic Biomass and cellulose pulp Carlos Arce Gutiérrez